
Separation Platform for Integrating Complex Avionics

(SPICA)

Final Report

December 15, 2013

SPONSORED BY: NASA Ames Research Center

Contract #: NNX13AB99A

Contract Period of Performance: 16 November, 2012 to 15 November, 2013.

Contractor: Adventium Enterprises, LLC
Principal Investigator: Dr. Mark Boddy

Business Address: 111 3rd Ave S, Suite 100
Minneapolis, MN, 55401

Phone Number: 651.442.4109

DISCLAIMER:
The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either express or implied, of NASA.

SPICA

Contents

1 Introduction 1
1.1 Innovation and Novelty . 2
1.2 National Aeronautics Impact . 3

2 Phase I Progress and Results 4

3 Preliminaries 7

4 Notation and Definitions 9
4.1 Resources . 9
4.2 Systems . 9
4.3 Tasks . 11
4.4 Partitions . 13
4.5 Flows . 14
4.6 Schedules and Assignments . 17

5 Constraints 19
5.1 Task Constraints . 20
5.2 Partition Constraints . 21
5.3 Resource Constraints . 23
5.4 System Constraints . 23

6 Defining the Scheduling Problem for SPICA 24

7 Examples 25

8 Conclusion and Next Steps 28

c©2012-2013 Adventium Labs i

SPICA

1 Introduction Architecture Integration

Aircraft HW
Architecture

Navigation

Route Planning

Communications

Scheduler

Mem Mgr

Thread Mgr

Msg Router

SMT, other solvers

AADL Models

Allocation

Scheduling

System
Architecture
Specification

Configured Safe
Secure RTOS

N
av
ig
at
io
n

Co
m
m
un

ic
at
io
ns

Ro
ut
e
Pl
an
ni
ng

Separation Platform
for Integrating

Complex Avionics

Aircraft HW
Architecture

Hosted Control Applications Domain Specific Components

S
el

ec
t

System Safety Requirements
System Security Requirements Rate, Jitter, Duration

RTOS model
Mutual Exclusion
Performance
Integrity, Availability
Synchronization

Integrated Vehicle

Requirements

Multi-core, multi-processing
Distributed sensing, actuation
Physical separation
Bandwidth
Hierarchical Memories

Figure 1: SPICA plays a key role in avionics system design and integration.

Modern avionics systems must support a large and rapidly increasing number of di-
verse, mixed-criticality functions, deployed on increasingly complex and diverse avionics
hardware, while meeting stringent performance requirements. Effective use of multi-core
and distributed avionics systems is hindered by the difficulty of allocating processor, mem-
ory, and communcation resources among the required functions. Building on previous
work in constraint-based resource allocation, scheduling, and configuration management for
fault-tolerant, real-time systems, Adventium’s Separation Platform for Integrating Com-
plex Avionics (SPICA) system addresses this need by generating static schedules and
time-phased resource allocations for distributed, hierarchical, and mixed-criticality systems.
Treating the whole aircraft as a system, rather than as a collection of federated components,
SPICA enables effective use of multi-core processors and advanced communications net-
works, resulting in improvements in the performance, efficiency, safety, and dependability of
complex avionics systems.1

In this report, we describe the goals, technical approach, and results of Adventium Labs’
SPICA Phase I project, funded under the National Aeronautics and Space Agency (NASA)’s
Leading Edge Aeronautics Research for NASA (LEARN) program. The key research objec-
tive of the Separation Platform for Integrating Complex Avionics (SPICA) is to system-

1As defined in [1], dependability includes reliability, availability, safety, maintainability, confidentiality
and integrity.

c©2012-2013 Adventium Labs 1

SPICA

atically address aircraft-level avionics design and integration challenges, from early in the
requirements and design processes through integration and test. SPICA specifically ad-
dresses: real-time requirements, such as rate, duration, jitter, and end-to-end latency;
hierarchical architectures, including cabinets, modules, processors, cores, and their inter-
connections at all levels; incremental reconfiguration for upgrades, fault tolerance, fault
response and guaranteed margin; time-phased global resource assignment of functions
at multiple criticalities. SPICA guarantees separation, dependability, availability and in-
tegrity, as well as supporting graceful degradation, mission assurance, and survivability.

Our Phase I program addressed the primary risks of this approach, including complexity-
driven scaling in domain-specific solver performance and the interaction between problem
requirements (e.g., separation constraints) and the allocation flexibility provided by a given
avionics architecture. In the Phase I effort we have generated a formal specification of
the complete set of constraints, sufficient to represent a wide range of different avionics
architectures and problems. We have produced a large set of test problems for input to
the yices Satisfiability Modulo Theory (SMT) solver, demonstrating the use of those con-
straints, along with output results and performance data, as well as a tunable test problem
generator, automatically generating problem instances in yices input format. Finally, we
have also produced an exemplar aircraft avionics architecture, rendered in both diagrams
and Architecture Analysis and Design Language (AADL).

Current system performance is adequate to testing, but not sufficient for a mature sys-
tem. The current prototype will solve problems involving dozens to hundreds of constraints,
in minutes. Experiments have demonstrated that the growth in solving time for increasing
problem size is reasonable: there is no sharp “knee” in solution times. SMT technology
has demonstrated performance on millions of constraints, and in previous work, we have
demonstrated several orders of magnitude increase in problem size and decrease in solving
time, using a combination of problem reformulation and search control.

1.1 Innovation and Novelty

In current aviation platform development and upgrade processes, integration is performed
during late-stage implementation phases, in testbeds, system integration laboratories, and
even in operational systems. As shown in Figure 2, this is a very costly way to do integration
due to the rapidly increasing cost to fix problems as they are detected later in the design
process. The key innovation of SPICA is to support early-stage (ideally design-phase)
aircraft-wide integration by providing and then maintaining guarantees that temporal and
other performance requirements will be met by the system as a whole. This reduces late-stage
performance surprises and delays, as well as reducing initial and lifecycle costs of aeronautic
systems.

Applying constraint-based approaches, including the use of SMT solvers, to scheduling
and allocation problems is not a new idea. The innovation in SPICA is to apply this tech-
nology to generate a static allocation, derived from a complex, hierarchical, mathematically-
correct model of avionics systems as represented in AADL. Related work in this area includes
the application of SMT solvers to Aeronautic Radio Incorporated (ARINC) 664 communi-
cations scheduling (but only to communications) as in [10], as well as a variety of tools for
online, dynamic scheduling. In contrast, SPICA emphasizes the formulation of a set of con-

c©2012-2013 Adventium Labs 2

SPICA

Figure 2: Most bugs are introduced early in the design process, and discovered late in imple-
mentation, integration, and even deployment. The cost to fix these bugs grows dramatically
as detection is delayed [5].

straints defining a correct time and space allocation of computation, communication, and
memory resources, and then solves to find that allocation. The most closely related work is
our previously-developed scheduler for the time-and space-partitioned Integrated Modular
Avionics (IMA) architecture deployed on the Boeing 777, 717, and Lockheed C5-AMP. That
scheduler did not address allocation of functions to processing elements (and thus memory),
allocation of functions to partitions, or ARINC 664 communications scheduling (which had
not been published at that time). In more recent work, we have also developed a proof-
of-concept mixed-criticality, real-time scheduler for a multi-core, hypervisor-based system,
called MICART [7].

1.2 National Aeronautics Impact

SPICA’s potential impact on NASA and national aeronautics challenges is to provide a novel
capability for rapid, dependable integration of new functions, systems, and components into
new and legacy avionics architectures. SPICA will provide this while maintaining per-
formance guarantees of existing capabilities and systems, enabling certified, flight critical
avionics functions to safely and robustly operate side-by-side on shared hardware with func-
tions not certified at the same level, without having to be re-certified as new functions are
added. SPICA will also enable fuller utilization of multi-core processors and embedded
systems while maintaining these guarantees, improving the performance, efficiency, safety,

c©2012-2013 Adventium Labs 3

SPICA

and dependability of aeronautical avionics. Specifically with regard to NASA, SPICA is
relevant to the following programs:
Integrated Systems Research – SPICA will provide support for investigating the avionics-

level integration of novel functions, hardware systems, and architectures.
Aviation Safety – This program covers assurance for flight-critical systems, including man-

aging the complexity of architecting, validating, and verifying the correct functioning
of increasingly complex avionics. SPICA’s output is a concrete schedule which can
easily be verified to satisfy requirements governing execution times, latencies, and sam-
pling rates, as well as more complex issues such as metastable communications across
an asynchronous boundary.

Orion – SPICA is developing relevant capabilities for other complex, networked vehicular
systems. For example NASA’s Orion Multi-Purpose Crew Vehicle (MPCV) uses several
of the protocols and standards SPICA is designed to address.

In this report, we summarize the progress on the Phase I SPICA project (Section 2.
We then introduce the formal constraint model we have developed, in Section 3. Section 4
presents our notation and definitions, while Section 5 contains the constraints that define
the SPICA scheduling problem. Section 6 uses those constraints to define a family of
scheduling problems that can be addressed by SPICA, with some simple examples provided
in Section 7. Finally, in Section 8 we present our conclusions and describe the next steps,
specifically including our objectives for the Phase II project.

2 Phase I Progress and Results

In Phase I, we analyzed the features of modern avionics architectures, with primary empha-
sis on the Boeing 787 Common Core System (CCS) and the Airbus 380 Integrated Modular
Avionics (IMA) architectures. Based on that, we synthesized a reference problem and a suite
of test examples, with an emphasis on IMA, distributed sensing and actuation, and modern
avionics communications networks (e.g., time triggered, globally asynchronous locally syn-
chronous). We generated a formal specification of a set of constraints sufficient to represent
both the 787 CCS and the 380 IMA, as well as a wide range of other avionics architectures.
In particular, resource allocation for ARINC standards 653, 659, and 664 is fully supported
in SPICA, including the representation of hierarchical processing modules, asynchronous
boundaries, and multi-hop networks.

Figure 3 shows the avionics functions that we have confirmed can be modeled in AADL
(left column), the corresponding software features that have been specified in the formal
constraint model (center column), and hardware features that can be represented in AADL
and have been specified in the formal constraint models. All of the software and hardware
features listed in Figure 3 have been implemented in the Phase I SPICA prototype.

As a specific instance, Figure 4 shows the constraint model implemented in SPICA
to support partitioning and preemption in ARINC 653 systems. Among the features that
can be seen in that figure are the differences in context-switch time between inter-partition
and intra-partition context switches, preemption of one partition by another, and explicit
representation of the partition cleanup time once an interrupt is received.

The architecture of the Phase I SPICA prototype implementation is shown in Figure 5.

c©2012-2013 Adventium Labs 4

SPICA

Applications
FMS
Displays
Graphics
Data0Communication0Gateway
Data0Recorders
Health0Management
Primary0Flight0Controls
Actuator0Control0Electronics
Radios
Inertial0Reference0Units
Surveillance
Fuel0Management
Landing0Gear

Software
Partition

Context+Switch
Exclusion
Preemption
Partition+Assignment+of+Tasks

Tasks
Jitter
Context+Switch
Required+Computational+Duration
Initial+load+time
Minimum+Duration
Period
Preemption
Allowed+Binding
Exclusion

Flows
Latency
Jitter
Size
Oversampling
Undersampling

Redundancy

Hardware
!Processors
!Memories
!Communication!Buses
!Asynchronous!Boundaries
!Modules
!Cabinets
!Aircraft

Figure 3: All of the applications listed can be represented in AADL. All of the software
features needed to model those applications have been specified in the formal constraint
model. All of the hardware features shown can be represented in AADL and have been
specified in the formal constraint model.

Figure 4: SPICA constraint model for ARINC 653, showing two partitions (1 and 2), and
three tasks (A, B, and C). Partition 2 preempts Partition 1. All of the required context
switch times are modeled.

With the exception of the two lighter-colored arrows on the lower left, all of the functions,
representations, and interfaces shown have been implemented. Consequently, we place the
prototype at a Technology Readiness Level (TRL) of 3. By the completion of the Phase

c©2012-2013 Adventium Labs 5

SPICA

II effort we expect to attain a TRL of 5 or 6, depending in part on whether or not our
proposed optional task is funded. The Open Source AADL Tool Environment (OSATE)
can be used to generate or modify an AADL model, containing any or all of the elements
previously discussed. The SPICA prototype includes an OSATE plugin that automatically
extracts a constraint model from an AADL model, representing the output in the constraint
language Minizinc.2 As shown by the lighter-colored arrows, we then have the option of
either implementing a translator from Minizinc into the python representation from which
we generate input for the Yices SMT solver3, or of modifying the OSATE plugin to generate
that python representation directly.4 Our current plan is to modify the plugin.

AADL$Model$

Problem$
Generator$

YICES$Solver$ Solu9on$
Intermediate$
representa9on$

(python)$

Minizinc$
Constraint$
Language$

OSATE$

Ex
tra

ct
io

n

Tr
an

sla
tio

n

Direct Translation

Figure 5: SPICA Phase I implementation

Generating python code directly from the AADL model has two advantages. First, we
avoid any “semantic gaps” caused by translation through Minizinc. And second, we have
more direct control over the python generated, and thus over the input to Yices. Problem
instances for input to the Yices solver may also be generated by a problem generator we
have implemented for testing purposes as part of this project.

Finally, the Yices solver is invoked, generating either a solution (i.e., a time and space
allocation of computing, memory, and communication resources which satisfies all of the
input constraints), or an indication that the constraints are mutually inconsistent, signalling
that no allocation can be found for the current design. Figure 6 presents an allocation
found by SPICA for a moderately-complex input problem, consisting of a few dozen tasks
and constraints. Among other interesting features, this particular example demonstrates
enforcement of latency constraints across an asnynchronous boundary.

In order to evaluate both the breadth and correctness of our constraint model and the
scaling performance of SPICA, we generated a large set of test problems (effectively a set
of unit tests for SPICA), as well as implemented a tunable test problem generator, which
automatically generates problems of various sizes, with specified types of constraints present.
The current prototype will solve problems involving dozens to hundreds of constraints in
minutes. This performance is adequate for testing, but not for a mature system.

2This plugin was implemented on a previous project.
3http://http://yices.csl.sri.com/
4We generate python that expands into Yices input format rather generating that input format directly

because the python can be much more concise and structured, and so easier to interpret, debug, and modify
if needed.

c©2012-2013 Adventium Labs 6

SPICA

0 500 1000 1500 2000 2500 3000

1
2

3
4

5
6

7
8

9
10

11
12

13

/home/redman/Adventium/spica/Design/experiments/smt/test−cases/test15.mat

time

re
so
ur
ce

t01(1) t01(2) t01(3),t16(1)

t02(1) t02(2) t02(3)

t03(1) t03(2) t03(3)

t04(1) t04(2) t04(3) .. .

t05(1) t05(2) t05(3)

t06(1) t06(2) t06(3)

t07(1) t07(2) t07(3)

t08(1) t08(2) t08(3)

t09(1) t09(2) t09(3)

t10(1) t10(2) t10(3)

t11(1) t11(2) t11(3)

t12(1) t12(2) t12(3) .

t13(1) t13(2) t13(3)

t14(1) t14(2) t14(3)

t15(1) t15(2) t15(3)

partition
1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

Figure 6: Graphical display of a time and space allocation generated by SPICA

As shown in Figure 7, the growth in solving time for increasing problem size is reason-
able: there is no sharp “knee” in solution times. We are confident in being able to scale
SPICA up to the required problem size. SMT technology has been demonstrated on mil-
lions of constraints [9], and in previous work, we have shown that a combination of problem
reformulation and search control can decrease solving time and increase the size of problems
handled by several orders of magnitude.

3 Preliminaries

In the next few sections, we present the constraint formulation we have developed for SPICA.
This formulation supports temporal scheduling, resource allocation, and planning. These
constraints take a different form than the deadline/offset problems of [2] and [8]. Using
mathematical notation for the constraints simplifies the process of translating our models
into an SMT language which can then be fed to an SMT solver in order to generate a
solution. Previous work in this area has used different flavors of constraints or otherwise
failed to capture the full richness of the constraints required for ARINC 653. Our work here
was inspired by the SMT modeled job-shop scheduling of [4] while the ARINC constraints
we place upon those were discussed in [3].

The contributions of this work are twofold.
1. Present a unified source for all of the ARINC type constraints, which must be taken

into account by a system designer, written in a precise, mathematical form.
2. To present the constraints in such a form that they can be presented to an SMT solver

and thereby, present an efficient ways to produce a static schedule which satisfies all
of the ARINC type constraints.

In Section 4 we present the definitions we have found useful in formulating a scheduling
problem, including examples and discussion. Section 4 is further subdivided into hardware

c©2012-2013 Adventium Labs 7

SPICA

● ● ● ● ● ● ● ●

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

● ● ● ● ● ● ● ●

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

● ● ● ● ● ● ● ●

Test cases scaling

Multiplier

Ti
m

e
to

 s
ch

ed
ul

e
(s

ec
)

1 2 3 4 5 6 7 8

0
10

0
30

0
50

0
70

0
90

0
11

00

●

●

●

test1
test2
test4
test5
test6
test7
test8
test9
test10
test11
test14
test15
test16

Figure 7: Solution times increase in a well-behaved way with increasing problem size. The
horizontal axis is a multiplier for each problem. So, the instance of “test8” at horizontal
coordinate 5 is 5 times as large as the smallest instance.

(resources and systems) and software (tasks and partitions) sections. Resources represent the
assets required to perform that computation, bound together and networked with systems
(inspired by AADL), while tasks represent discrete aspects of computation. Section 4
concludes by abstractly defining the ways in which tasks may be mapped onto resources
both temporally and spatially. We refer to these mappings as as schedules and allocations
respectively, and taken together they will be the primary focus of this document.

Throughout this document time and all measurable quantities are assumed to be non-
negative integers (Z≥0) and all sets are assumed to be finite and non-empty, unless otherwise
stated. Taking a system designers perspective, we assume that the quantization of resources
is provided to us in advance, and since we are using mathematical notation and smt solvers,
the quanta does not significantly effect the tractability of the solution.

c©2012-2013 Adventium Labs 8

SPICA

4 Notation and Definitions

This section sets out some basic definitions for concepts such as resources, tasks, flows, and
schedules.

4.1 Resources

The starting point of our discussion is to describe the resources which allow computation to
be performed and work to be done. For our purposes resources will represent the assets of
a computing system which must be explicitly allocated and scheduled and will all be metric
in nature. Examples include processors, memory, and communications channels. Resources
may be partitioned both in time and capacity, as they will used by multiple tasks.
Definition 4.1 (Resource) A Resource is a distinguished facility for performing compu-
tation which has some available capacity ξ (with units unspecified).

Distinct resources are given distinct names, even when the resource provide facilities
to perform the same type of work, for instance two Central Processing Units (CPUs) which
one desires to schedule independently could be modeled as two different resources, while two
cores of a single CPU might be modeled as a single resource with capacity 2.

Resources come in many different shapes and sizes but for our purposes in this document
the resources will be one of two flavors, fluent (whose full capacity can be used by different
tasks at different times, making them subject to Constraint 5.14) and static (which must
be allocated for all time, and thus are subject to both of Constraints 5.14 and 5.15). We
assume here that all resources are fluent and pick out a distinguished set of static resources,
which we typically refer to as Rstatic

For clarity we will sometimes use functional notation to refer to the capacity of a resource
R.

ξ(R) = ξR

In the traditional scheduling literature [8] [2], resources are unitary and can be modeled
as a resource with capacity ξ(R) = 1. A typical collection of resources for our purposes would
be processors, communication busses, and peripheral devices.

When we discuss scheduling problems, it is generally assumed that resources are taken
from a pre-determined set of available resources. We will typically refer to this pool as R
which we call the set of available resources with a distinguished subset of static resources
Rstatic ⊆ R

4.2 Systems

Resources themselves do not exist in isolation but are typically grouped together into ag-
gregations such as a desktop computer or rack mounted server, consisting of one or more
processors, cache, ram, network, and other peripheral devices. To reflect this we introduce
the concept of a system. Our definition is inspired by IEEE-1471 [6], which characterizes
systems as “A collection of components organized to accomplish a specific function or set of
functions”.

c©2012-2013 Adventium Labs 9

SPICA

Definition 4.2 (System) A system S is a non-empty set of interrelated resources (them-
selves non-empty sets) and other systems.

The idea of a system is meant to capture the concept of a bundle or grouping of re-
sources that must be used together to perform some useful work. For example, a computer
system (host) might be an aggregate of one or several processors, memory, and an Ether-
net interface, and could consist of several subsystems such as a non-networked subsystem
consisting of only a processor and memory, as well as a networked subsystem consisting of
processor, memory, and ethernet, allowing the designer to model a variety of ways for the
software to interact with the hardware. Under this definition a non-networked computation
could run on the subsystem of processors and memory. This illustrates an important point,
which is that systems can be hierarchical, allowing for complicated groupings of resources as
well as encoding a network topology. Example 4.3 illustrates both grouping and network
connections.

Resources and systems are fixed by the system designer’s choice of hardware. For
example a system architecture might offer K processors, M megabytes of memory, N high-
speed networks and so forth. Some resources, e.g. networks, can be shared among multiple
systems.

All of the resources within a given system are assumed to be synchronous with globally
time triggered events and with no timing drift. It is important to note, however, that this
assumption does not extend across systems. Distinct systems are allowed to be asynchronous
with clock skew. We deal with the asynchronous nature of systems by virute of flows (See
Constraint 5.10). Flows are the only constraint which must be applied across systems, so
we predict the worst case latency for a flow which crosses an asynchronous boundery and
adjust our latency constraint so that the desired observed latency is always obtained (or a
system is considered unschedulable).

The mechanism we provide to detect asynchronous boundaries is a function sync :
R×R → Z≥0 which records the number of asynchronous boundaries between two systems.

Figure 8: Example of system hierarchy and network topology

Example 4.3 In this example we are modeling two computers with separate memory and
processor resources connected via a shared Ethernet connection. Formally, this example

c©2012-2013 Adventium Labs 10

SPICA

consists of 3 fluent resources (R0, R2, R3) and 2 static resources (R1, R4), which have been
divided into two systems. Each system contains a “cpu”, a “mem”, and a “eth”. The systems
are connected by the “eth” resource, which is contained in both systems.

R = {R0, R1, R2, R3, R4}

S =

S0 = {R0, R1, R2}
S1 = {R0, R1}
S2 = {R2, R3, R4}
S3 = {R3, R4}
S4 = {R2}

To define the quantity function on these resources, we simply define the quantity function

ξ(R0) = 2,

ξ(R1) = 1024,

ξ(R2) = 1,

ξ(R3) = 2,

ξ(R4) = 1024.

This is illustrated in Figure 8. Notice in particular that the resources hierarchy is encoded by
the subset inclusions S1 ⊂ S0 and S3 ⊂ S2 while network topology is encoded by the sharing
of R2 by systems S0 and S2.

4.3 Tasks

In this document, tasks are an atomic unit of computation and information processing,
which could represent actions as diverse as bus transfers, sensor readings, or traditional
computation.
Definition 4.4 (Task) A Task τ = (C,Q,A) is a discrete unit of information processing
in which
• C : S → Z>0 is a (partial) function which denotes the amount of time to budget to run

a task on a system (worst case execution time, not including context switch),
• Q : R → Z>0 is a (partial) function which denotes the quantity of each resource

required,
• and A ⊆ S is the set of allowed systems, i.e. the systems on which τ is allowed to

run.
Compute time and quantity are independent measurements, with quantity being mea-

sured in the same units as the resource R. The intuitive idea behind this is that the quantity
of a resource required by a task depends on the resource (for instance, a task which requires
4MB of ram), however the compute time depends on all the resources which are made avail-
able to a task, for instance, a task might be able to run on two systems containing memory
with different latencies or throughput, which would change the compute time of the task.

The functions C and Q for compute time and capacity are made with partial functions
to avoid defining a value of C for every possible resource. This can be easily extended to a

c©2012-2013 Adventium Labs 11

SPICA

function on the entire set of resources with the assumption that C(R) = ∞ if C(R) is not
explicitly defined.

Tasks can be defined in various ways: periodic, sporadic, aperiodic. This work is pri-
marily concerned with periodic tasks.
Definition 4.5 (Periodic Task) A periodic task is a task that must be performed at reg-
ular intervals (called the period T) in perpetuity. A periodic task is parameterized by the
4-tuple τ = (T,Q,C, J,A) in which, T > 0 denotes the period, and J > 0 denotes the
maximum-allowed-jitter. Both period and jitter are intrinsic properties and do not depend
on resources.

For clarity we will sometimes use functional notation for tasks

C(τ) ≡ C

T (τ) ≡ T

J(τ) ≡ J

Q(τ) ≡ Q

A(τ) ≡ A

The notions of period and jitter here are, for now, arbitrary constants. For details on
jitter, see Figure 12 as well as Definition 4.7.

The parameters T and J of periodic tasks do not entirely make sense on their own,
because we do not schedule tasks, we schedule task instances. Both period and jitter place
requirements on the difference in start times between task instances.
Definition 4.6 (Task Instance) Each occasion a periodic task τ = (T,C,Q, J,A) executes
to completion is known as a task instance. Task instances are numbered sequentially, so that
the jth release of τ is known as τ(j) = (Sj, Fj, Pj), with start time Sj, finish time Fj, and
preemption count Pj. All task instances of periodic task τ have the same compute time C(τ)
and allowed systems R(τ), as τ .

These functional notations can be extended to instances τ(j) of a task τ

C(τ(j)) ≡ C(τ)

T (τ(j)) ≡ T (τ)

Q(τ(j)) ≡ Q(τ)

A(τ(j)) ≡ A(τ)

S(τ(j)) ≡ Sj

F (τ(j)) ≡ Fj

P (τ(j)) ≡ Pj

We will typically refer to the set of all tasks as T and the set of all task instances as Tinst
(potentially infinite). Note that F (τ(j))−S(τ(j)) need not equal C(τ)(R) as task instances
may be preempted. If a task is preempted, it should be reflected in the preemption count
P (τ(j))

With start/finish times for task instances, we can now give meaning to the jitter pa-
rameter of a task. All references to jitter in this document will mean relative start jitter.

c©2012-2013 Adventium Labs 12

SPICA

Definition 4.7 (Relative Start Jitter) The relative start jitter of a task is the maximum
allowed deviation of the start time of two consecutive instances [2, p.73].

J(τ) = |S(τ(j + 1))− S(τ(j))− T (τ)|

The actual jitter between two task instances is a function of both the schedule (see
section 4.6) and physical effects of a given system such as clock skew and asynchronous
boundaries. Constraints on allowable jitter help define a feasible schedule (see Section 6). In
some cases jitter will be unimportant, and the constraint on jitter may simply be specified
as ∞.

4.4 Partitions

Partitions support grouping of related tasks to run in a lightweight but isolated and protected
common runtime, saving context switch time, but potentially increasing latency and jitter,
as these can only be computed with respect to partition execution, rather than execution of
individual tasks within a given partition.
Definition 4.8 (Partition) A partition P = (T,∆in,∆,A) is a set T of tasks which are
required to run on the same set of resources (system). The list of systems on which they are
allowed to run mirrors the allowed systems of tasks, and is denoted A ⊆ S.
It is considered invalid to have a task in two partitions. Given a partition P we introduce
functions

T (P) = T

∆in(P) = ∆

∆(P) = ∆

A(P) = A

Because the tasks assigned to partitions are periodic, a single partition may execute within
multiple, disjoint intervals across the schedule. Individual slices of execution for a given
partition are referred to as partition activations. Individual partition activations may also
be preemptible. Consequently, partitions have two context switch times associated with them,
an initial context switch time ∆in, which must be reserved at the beginning of each partition
activation and a continuation context switch time ∆ which must be allocated whenever a
partition activation returns from a preemption (see Figure 9).
Definition 4.9 (Partition Activation) A activation ℘ of a partition P is a 3-tuple (B,E, T̃)
in which T̃ = {τi(j)} denotes a set of task instances taken from T (P) (that is, τi ∈ T (P)).
The parameters B,E ∈ Z≥0 are the Begin and End time of the activation.
In ARINC 653, what is scheduled are partition activations, with task instances released at
the start of a given partition activation. Consequently, any timing constraints related to
tasks or task instances must instead be applied to the start and end times of the appropriate
partition activations.

As with tasks, partition activations also inherit the properties of the partition. We use
a minor abuse of notation in order to refer to the partition activation ℘ associated with a

c©2012-2013 Adventium Labs 13

SPICA

0 500 1000 1500 2000

1
2

/home/redman/Adventium/spica/Design/experiments/smt/test−cases/test9.mat

time

pa
rt

iti
on

t1(1)

t2(1),t3(1) t2(2),t3(2)

TVIIQTXMSR�XMQI

MR
�

Figure 9: initial context switch, context switch, and preemption time

task instance τ(j) (i.e., the partition activation at the start of which τ(j) is released.

B(℘) = B

E(℘) = E

T̃ (℘) = T̃

∆(℘) = ∆

℘(τi(j)) = {℘ such that τi(j) ∈ P}

We denote the set of all partition activations as Pact. If the partition activation for a
given task instance is preempted, that task instance may continue execution in subsequent
activations for the same partition.

Partitions are meant to provide spatial and temporal resource protection, which we
primarily use to provide criticality guarantees, but also can be used to decrease context switch
time by providing a lightweight threading mechanism. Tasks which run within a partition
must only pay a lightweight context-switch time for the task, while switching between tasks
in separate partitions requires the additional ∆ of partition level context switch time, the
magnitude of which depends on the system on which P is running.

4.5 Flows

Flows model how information moves through a system, imposing orderings and time con-
straints on tasks.
Definition 4.10 (Flow) A flow is a tuple ϕ = (g, L) where g = (V,E) is a directed, acyclic
graph (DAG) whose nodes are tasks and edges form a partial order on tasks. L > 0 denotes
end-to-end latency (see Figure 10 for details).

c©2012-2013 Adventium Labs 14

SPICA

As with tasks and partitions, the equivalent functional notation is:

L(ϕ) ≡ L

g(ϕ) ≡ g

V (ϕ) ≡ V

E(ϕ) ≡ E

Finally, we will use the term length (denoted `(ϕ)) to refer to maximum graph-theoretic
distance in g(ϕ).

Latency: Preemption

• Producer and consumers can be interrupted or
preempted

• In that case, Latency is still measured from the
producer begin event to consumer end event

2013 © 2009‐2013 Adventium Proprietary 13

Time

Producer A

Data transfer AB
Consumer B

Latency AB

Figure 10: Measuring AB latency is defined from the start of instance τA(i) to the finish of
τB(j).

A Flow comprises a set of precedence constraints among tasks, some of which repre-
sent actual computation, while others represent communication as reserved time on a bus.
Typically, we are most interested in end-to-end latency across (part of) a flow, as shown in
Figure 10. As task instances provide a specific implementation of tasks, flow instances do
the same for flows.
Definition 4.11 A Flow Instance ϕ(j) is a flow ϕ in which each node in g has been replaced
with a task instance.
Deciding which task instances to include for each task in a flow is part of the problem of
generating a feasible schedule.
Example 4.12 A simple flow with latency 100 between tasks τ1 and τ2, each with 0 jitter
and period 100 would be formalized as:

ϕ = (τ1 → τ2, 1000)

An instance of this flow could take the form

ϕ(1) = (τ1(1)→ τ2(35), 1000)

However, this flow instance will not be schedulable, as τ2(35) will start 3500 units after τ1(1),
leaving no hope of finishing with the desired latency.5

This example illustrates the need to be somewhat more precise in our discussion of flow
instances. In particular, how flow instances map over task instances is determined by the

5Recall that this notation refers to the first instance of task τ1 and the thirty-fifth instance of task τ2.

c©2012-2013 Adventium Labs 15

SPICA

relative periods of subsequent tasks in the flow, by flow latency constraints, and by assump-
tions about how data transfers along the flow are buffered.

A common assumption, and the one we employ here, is that there is a single buffer for
each node in the flow graph with one or more outgoing edges. In other words, the information
generated by a given task instance is preserved, but only until the next instance of that task
begins execution. Other assumptions about information transfer lead to different sets of
constraints.

Suppose we have a simple flow, involving two tasks with the same period. In this case
for any edge e ∈ g of the form τ1 → τ2, we require a flow instance to have the form

τ1(i)→ τ2(i)

or

τ1(i)→ τ2(i+ 1)

For cyclic schedules, as are very frequently found in avionics systems, the arithmetic is
modulo the number of instances of each task in the frame. In other words, the “next” task
instance for the last producer task may be the first instance of the consumer task in the
next frame execution. This constraint enforces regular interleaving of flow instances over
task instances, which satisfies the single buffer assumption.

For flows involving tasks with different periods, we must address oversampling and
undersampling. Oversampling occurs when a flow contains the edge τ1 → τ2 and T (τ2) ≤
T (τ1). In this case we require that the oversampling rate is an integer, that is

T (τ1)

T (τ2)
= r ∈ Z

We refer to r as the ratio of oversampling. This case is illustrated in Figure 11. In this
case, for any edge e ∈ g of the form τ1 → τ2, we require a flow instance to have the form

τ1(i)→ τ2(bi ∗ r + kc)for k ∈ {0, . . . , r − 1}
or

τ1(i)→ τ2(b(i+ 1) ∗ r + kc)for k ∈ {0, . . . , r − 1}

Again, for repeated execution of a fixed frame, the index can wrap around into the next
frame. This contraint will enforce the integrity of single-buffering.

Undersampling occurs when a flow contains the edge τ1 → τ2 and T (τ1) ≤ T (τ2). In
this case we require that the under sampling rate is an integer, that is

T (τ2)

T (τ1)
= r ∈ Z

In this case, any edge e ∈ g of the form τ1 → τ2, we require a flow instance to have the form

τ1(i)→ τ2(bi/rc)
or

τ1(i)→ τ2(bi/rc+ 1)

As above, for repeated execution of a fixed frame, the index can wrap around into the next
frame, and this contraint will enforce the integrity of single-buffering.

c©2012-2013 Adventium Labs 16

SPICA

Latency: Over Sampling

Oversampling can be used to reduce latency
Within a synchronous temporal domain, latency
is measured to the first consumer instance

2013 © 2009‐2013 Adventium Proprietary 14

Time

Producer A (5 Hz)

Consumer B (10 Hz)

Latency AB

Figure 11: Oversampling when the flow period is greater than the period of task B

4.6 Schedules and Assignments

Schedules and resource allocations are our primary objectives. Schedules define the timing
properties of the entire system by specifying when task instances and partition activations
start and stop. In parallel to schedules, resource allocations define where those tasks run.
In some cases these allocations hold only while the task is executing, and so the resource
can be allocated to other tasks at other times. In other cases, the resource is allocated
staticly, meaning that it is allocated for a single use, across the entire schedule. In Section
5, we define the constraints that may be applied to a given schedule and the corresponding
resource allocation.6

Given the formal structure we have defined above, we can define two different types of
schedules: task schedules and partition schedules. Task schedules are a good test case for
timing properties of real time systems, while partition schedules are required for industrial
problems such as ARINC 653 scheduling.
Definition 4.13 (Task Schedule) A static task schedule is a function which maps tasks
to times. σ : {T ∪ ∅} → 2Z≥0

This definition maps tasks to subsets of the timeline, consisting of disjoint intervals, each of
which corresponds to the execution of an instance of a given task.

The idea of a schedule is lacking in regards to knowing where (on what system) a task
is running. To address this we define a task allocation.
Definition 4.14 (Task Allocation) An task allocation is a mapping of tasks to systems
α : Tinst → S.
The particular resources on which a task is running changes the context switch time of that
task. Allocating tasks to systems and scheduling them induces context switch overhead
which is not allotted for in the compute time of a task or task instance. The context switch
overhead of a task then depends on both on the resource allocation α of τ and on the
schedule of τ (more preemptions = more overhead). In order to abstract away the details of
task context switching, we define context switch time as a function ∆σ,α.
Definition 4.15 The context switch overhead of task instance τ(j) under a schedule σ and
resource allocation α is a function ∆σ,α : Tinst → Z≥0. We refer to the minimum context
switch time as ∆ = min ∆σ,α

6Hereafter, when there is no need to distinguish, we will refer to these simply as a schedule, with the
allocation implicit.

c©2012-2013 Adventium Labs 17

SPICA

In this general setting, tasks can be scheduled for arbitrary subsets of times, however it
will often be useful to talk about slices scheduled for continuous segments of time. We call
these segments of time slices and define them formally
Definition 4.16 (slice) A slice of task instance τ(j) is an interval on [a, b) ⊂ Z such that
[a, b] ∩ σ(τ(j)) = [a, b]. Unless otherwise noted, we assume a slice to be maximal, meaning
that a− 1 6∈ σ(τ(j) and b 6∈ σ(τ(j).
Example 4.17 A typical way to visualize a schedule is in a table such as this one

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cpu0 τ1(1) − τ2(1) τ2(1) τ2(1) τ2(1) − − − τ1(2) − − − − − −

mem0 τ1(1) − τ2(1) τ2(1) τ2(1) τ2(1) − − − τ1(2) − − − − − −
eth0 − − − − − − τ3(1) τ3(1) − − − − − − − −
cpu1 − − − − − − − − τ4(1) τ4(1) τ4(1) τ4(1) τ4(1) − − −

mem1 − − − − − − − − τ4(1) τ4(1) τ4(1) τ4(1) τ4(1) − − −

In this table, we can see that σ(τ1(1) = {0} while σ(τ4(1)) = {8, 9, 10, 11, 12}, making

[8, 12] a slice of τ4(1). We further can see that α(τ2(1)) = {cpu0,mem0} and α(τ3(1)) =
{eth0}. Implicitly, we also see that σ(∅) = {13, 14, 15}.
This example also shows the utility of resource timelines, which constitute the rows in the
table.

For convenience, the following functional notation may be used:

start(σ, τ(j)) = min(σ(τ(j)))

finish(σ, τ(j)) = max(σ(τ(j))) + 1

dur(σ, τ(j)) = |σ(τ(j)) ∩ {0, . . . ,Π− 1}|Jitter

Jitter is the variability in rate (or periodicity) measured period‐
to‐period
Specifically, it is the max difference of the task period to the
minimum and maximum separations of consecutive start
times of a periodic task (equivalently, it is the absolute value
of the difference of consecutive start times, minus the period)
2013 © 2009‐2013 Adventium Proprietary 18

Time

Task A (5 Hz, no jitter)

Task B (10 Hz, jitter)

Jitter A: 200 ms ‐200 ms = 0 msMin = max = 200 ms

Task B Max start‐to‐start = 150 ms Task B Min start‐to‐start = 50ms
Jitter B: 150 ms – 100 ms = 50 ms
(or 100ms period – 50 ms = 50 ms)

10 ms 160 ms

Figure 12: Example illustrating jitter.

For avionics applications using standards such as ARINC 653, it is frequently the case
that tasks will be grouped so as to reduce resource usage, e.g., by reducing the memory
footprint, or minimizing context switch time by using a light-weight scheduler among a set
of related tasks. These groupings are frequently called partitions.
Definition 4.18 (Partition Schedule) A static partition schedule σ on a set of tasks T
split up into a set of partitions P having activations Pact is a function σP : Pact → 2Z≥0. As
with task schedules, we implicitly extend a schedule to all of Z≥0 with the notion of scheduling
the null task ∅.

c©2012-2013 Adventium Labs 18

SPICA

We will use familiar functional notation for partition schedules in which ℘ is a partition
activation of the partition P .

begin(σ, ℘) = min(σ(℘))

end(σ, ℘) = max(σ(℘)) + 1

Example 4.19 We will extend Example 4.17 by assuming that tasks τ1, τ2,τ4,τ4 are parti-
tioned as

P1 = {τ1, τ2}
P2 = {τ3}
P3 = {τ4}

These partitions are further divided up into several activations, containing task in-
stances. The problem of dividing task instances into partition activations will be discussed
in detail in Problem 6.4.

℘1(1) = {τ1(1), τ2(1)}
℘1(2) = {τ1(2)}
℘2(1) = {τ3(1)}
℘3(1) = {τ4(1)}

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cpu0 ℘1(1) ℘1(1) ℘1(1) ℘1(1) ℘1(1) ℘1(1) − − − ℘1(2) − − − − − −

mem0 ℘1(1) ℘1(1) ℘1(1) ℘1(1) ℘1(1) ℘1(1) − − − ℘1(2) − − − − − −
eth0 − − − − − − ℘2(1) ℘2(1) − − − − − − − −
cpu1 − − − − − − − − ℘3(1) ℘3(1) ℘3(1) ℘3(1) ℘3(1) − − −

mem1 − − − − − − − − ℘3(1) ℘3(1) ℘3(1) ℘3(1) ℘3(1) − − −

In this table, we can see that σ(℘1(1)) = {0, 1, 2, 3, 4, 5} during which, τ1 and τ2 are

allowed to run in any order (note that there is sufficient time for both to run, which we will
enforce using Constraint 5.8.) In contrast σ(℘3(1)) = {8, 9, 10, 11, 12} and can run only
task τ4(1), as it is the only task instance contained in the partition activation.

Finally, when tasks are periodic, we typically restrict our attention to cyclic schedules,
which we have already seen examples of in Examples 4.17 and 4.19.
Definition 4.20 (Cyclic Schedule) A schedule (partition or task schedule) is cyclic with
major frame Π if

t ∈ σ(τi(j)) =⇒ t+ Π ∈ σ(τi(j)) for task schedules

t ∈ σ(℘) =⇒ t+ Π ∈ σ(℘) for partition schedules

In a cyclic schedule, each frame is like the any other. It suffices to describe a single frame.
Modular arithmetic over frame duration will be used to express some temporal relations.

5 Constraints

In this section, we define constraints over cyclic partition schedules. In all of the following,
we use this notation:

c©2012-2013 Adventium Labs 19

SPICA

• R = {Ri} is the set of resource which contains a distinguished subset Rstatic ⊂ R of
static resources,
• S = {Si} is the set of systems,
• T = {τi} is the set of tasks, with Tinst denoting task instances,
• F = {ϕi} is the set of flows, with Finst denoting flow instances,
• P = {℘i} is the set of partitions, with Pact denoting partition activations,
• and (σ, α) is schedule/allocation pair.

The constraints described in this section are grouped into the following sections:
Task constraints (Section 5.1) - Constraints arising from the timing properties of tasks

and flows, including period, jitter, duration, and latency.
Partition constraints (Section 5.2) - Constraints arising from the grouping of tasks,

including ordering, latency, and jitter.
Resource constraints (Section 5.3) - Constraints arising from individual resources in-

cluding over allocation, context switch, and migration which apply to both tasks and
partitions.

System constraints (Section 5.4) - Constraints arising from systems, including check-
ing topology, allowed systems, and migration, which apply to both tasks and partitions.

5.1 Task Constraints

Constraint 5.1 (Task Duration Constraint) For every task instance τ(j) of τ ∈ T , and
every resource R ∈ R, we require:

dur(σ, τ(j)) ≥ C(τ) + ∆σ,α(τ(j))∀τ(j) ∈ Tinst.

The Task Duration constraint requires that all tasks are assigned adequate compute time by
the schedule on their required resources. The duration may be larger than the compute time
alone, as the scheduled time must also include context switch and preemption overhead.

Constraint 5.2 (Jitter Constraint) For every task instance τ(j) of τ ∈ T ,

T (τ)− J(τ) ≤ start(σ, τ(j + 1)− start(σ, τ(j)) ≤ T (τ) + J(τ)

Jitter constraints require bounds on the earliest and latest start times available to task
instances.

Constraint 5.3 (Start-to-Finish Latency Constraint) The Start to Finish latency ties
the end points of a data flow to the start of its first task and the end of its last task. For
every flow instance ϕ in Finst and every τi(j) ≤ τk(`) ∈ ϕ:

finish(σ, τk(`))− start(σ, τi(j)) ≤ L(ϕ).

Start to Finish Latency Constraints require that all data flows in the schedule complete
within their latency bounds. This is illustrated in Example 4.17.

c©2012-2013 Adventium Labs 20

SPICA

Constraint 5.4 (Partial Order Flow Constraint) For every flow instance ϕ(j) of flow
ϕ ∈ F

e ≡ τi(k)→ τj(l) ∈ E(g(ϕ)) =⇒
start(τj(k)) ≥ finish(τi(l)).

Partial order flow constraint requires that task instances are only scheduled according to
their order in a flow instance. In Example 4.17 this constraint prevents instances of task τ2
from being scheduled concurrently with instances of task τ1 or τ3.

Constraint 5.5 (Strictly Sequential Instance Constraint) For every task instance τi(j) ∈
Tinst

finish(τi(j) ≤ start(τi(j + 1))

The strictly sequential instance constraint requires that sequential instances of a task τ do
not overlap in time, i.e. instance τ(j + 1) cannot start until after τ(j) has finished.

Constraint 5.6 (Minimum Task Duration) For every task τi(j) (including the null task
∅) we require

t ∈ σ(τ) =⇒ ∃a ≤ t ≤ b so that b+ 1− a > ∆σ,α(τ) and σ(τi(j)) = [a, b]

The Minimum Task Duration constraint requires that all tasks (including the null task) are
not scheduled for less time than it takes to perform a context switch. This is because the
processor is never truly idle and when scheduling an idle task for so short a time it would
be better to switch directly to the next task. It is possible that a task finishes early (i.e. in
less time than its worst case execution time). We leave the semantics of such a situation to
the implementer - our objective is to provide a guarantee of sufficient time.

5.2 Partition Constraints

Constraint 5.7 (Partition Activation Constraint) For every pair of partition activa-
tion ℘, ℘′ of a single partition P ∈ P and task τi ∈ T

If τi(j) ∈ ℘ and τi(k) ∈ ℘′ and j 6= k then ℘ 6= ℘′

The partition activation constraint enforces a sanity condition on partition activations,
namely that multiple instances of the same task must be separated into different parti-
tion activations. This assumes P to be a proper set-theoretic partitioning of tasks, i.e., each
task is assigned to exactly one partition.

Constraint 5.8 (Partition Activation Duration Constraint) For every partition ac-
tivation ℘ of any partition P ∈ P

∆(℘) +
∑

τi(j)∈℘

dur(τi(j))℘ ≤ dur(σ, ℘)

c©2012-2013 Adventium Labs 21

SPICA

The partition activation duration constraint is analogous to the task duration constraint
and is intended to provide sufficient resources for a partition activation. It guarantees that a
partition activation has sufficient computational time to run all the task instances it contains,
as well adequate context switch time. Notice that dur(σR, τ(j)) includes the context switch
from the resource R.

Constraint 5.9 (Minimum Partition Idle Constraint) if σ̃ is a partition schedule with
σ̃R(t) = ∅ then for all ℘1, ℘2 with end(℘1) ≤ t ≤ begin(℘2) we require:

∆ ≤ begin(℘2)− end(℘1)

The minimum partition idle constraint deals with null activations, which, due to context
switch, have a minimum allowed duration.

Constraint 5.10 (Begin-to-End Latency Constraint) The Beginning to End latency
constraint requires that for every flow instance ϕ in Finst and every τi(j) ≤ τk(`) ∈ ϕ:

finish(℘(τk(`)))− begin(℘(τi(j)))− T (τk) · sync(α(τi(j)), α(τk(`))) ≤ L(ϕ).

The partition latency constraint is essentially the same as the end-to-end latency constraint
5.3, with two differences. First latency is measured over partition activations, rather than
task instances. Second, we have added a term to account for the possible presence of asyn-
chronous boundaries on communication paths used by the flow instance.

Constraint 5.11 (Partition Jitter Constraint) For every task instance τ(j) of τ ∈ T ,

T (τ)− J(τ) ≤ begin(℘(τ(j + 1)))− begin(℘(τ(j))) ≤ T (τ) + J(τ)

The partition jitter constraint is similar to the task jitter constraint 5.2. However, jitter
is measured relative to the start times of the partition activations containing consecutive
instances of τ .

Constraint 5.12 (Valid Partitioning) The set P of all partitions is a set theoretic par-
tition of the set of all tasks. That is

∅ 6∈ P⋃
P∈P

P = P

P ∩ P ′ = ∅ for all P, P ′ ∈ P .

This constraint ensures the well-behaved nature of partitions discussed in 4.8, namely that
every task is contained in exactly one partition.

Constraint 5.13 (Sequential Activation Constraint) For any two partition activations
℘, ℘′ of P

E(℘) ≤ B(℘′) or E(℘′) ≤ B(℘)

The sequential activation constraint requires that no two activations of the same partition
can overlap. This would be a self-preemption and a significant fault.

c©2012-2013 Adventium Labs 22

SPICA

5.3 Resource Constraints

Constraint 5.14 (The quantity constraint) For every resource R, at all time t, we re-
quire that ∑

t∈σ(τi(j))

Qτi(j)(R) ≤ ξ(R)

This says that the quantity of a resource used at any time t may never exceed the total
availability of that resource in the system.

Constraint 5.15 (The static quantity constraint) For any fluent resource R ∈ Rstatic∑
τi(j)|R∈α(τi(j))

Qτi(j)(R) ≤ ξ(R)

This constraint allows us to model things like memory usage, which must be allocated at all
times, whether or not the task is executing at those times.

Constraint 5.16 (The non-migration constraint) For every resource R ∈ R and two
instances τi(j), τi(k) of a task τi, we require that if R ∈ α(τ(j)) then R ∈ α(τ(k))
The resource non-migration constraint says that once a task is allocated to a resource, it is
not allowed to be run on any other resource. That is, two instances of a single task cannot run
on two different resources. We acknowledge that this restricts the class of allowed schedules
but feel it necessary in order to provide guarantees and maintain our own sanity.

5.4 System Constraints

Constraint 5.17 (Connectivity Constraint) For every flow instance ϕ(k) of ϕ ∈ F , if
τi(·)→ τj(·) is an edge in ϕ(j), we require the existence of a system Sk so that

α(τi(·)) ⊂ Sk

α(τj(·)) ⊂ Sk

The Connectivity Constraint requires that tasks are assigned to resources in such a manner
that successive elements in the flow are on systems share a resource. In Example 4.17, this
constraint asserts that, within the flow the system on which τ1 runs must be provide an eth
resource and the system on which τ2 is run must be connected to a system with both cpu
and mem resources.

Constraint 5.18 (Non-migration Constraint) α(τ(i)) = α(τ(j)) for all i, j.
The Non-migration Constraint confines all instances of a given task to run on the same
system. It further gives us license to write α(τ) and talk about the resource assignment of
a task τ rather than the resource assignment of a task instance τ(j).

Constraint 5.19 (Allowed Resource Constraint) For every task τ ∈ T , α(τ) ∈ A(τ).

This constraint requires simply that the resource assigned to τ be one of those that is allowed
for τ .

c©2012-2013 Adventium Labs 23

SPICA

6 Defining the Scheduling Problem for SPICA

In this section, we define the scheduling problem addressed in SPICA. This scheduing
problem is static, cyclic, partition scheduling with topological constraints and (possibly)
asynchronous boundaries. We continue to use the notation defined in Section 5, specifically:
• R = {Ri} is the set of resources, including a distinguished subset Rstatic ⊂ R of static

resources,
• S = {Si} is the set of systems,
• T = {τi} is the set of tasks, with Tinst denoting task instances,
• F = {ϕi} is the set of flows, with Finst denoting flow instances,
• P = {℘i} is the set of partitions, with Pact denoting partition activations,
• and (σ, α) is schedule/allocation pair.

Definition 6.1 (Resource Assignment Problem) A schedule σR with resource assign-
ment function α is said to satisfy the resource assignment problem if it satisfies all of the
following constraints

1. The allowed systems constraint (Definition 5.19),
2. The Quantity constraint (Definition 5.14),
3. The Static Quantity constraint (Definition 5.15),
4. The non-migration constraint (Definition 5.18).

Definition 6.2 (Topological Resource Assignment Problem) A schedule σR with re-
source assignment function α is said to satisfy the topological resource assignment problem
if it satisfies all of the following constraints

1. The allowed systems constraint (Definition 5.19),
2. The Quantity constraint (Definition 5.14),
3. The Static Quantity constraint (Definition 5.15),
4. The non-migration constraint (Definition 5.18),
5. The connectivity constraint (Definition 5.17),

Definition 6.3 (Task Scheduling Problem) A schedule σR with resource assignment func-
tion α is said to satisfy the task scheduling problem satisfies all of the following constraints

1. Compute time constraint (Definition 5.1),
2. Strictly sequential instance constraints (Definition 5.5),
3. Partial-order flow constraint (Definition 5.4),
4. Allowed Resources Constraints (Definition 5.19),
5. Connectivity Constraints (Definition 5.17),
6. Finish-to-finish latency constraints (Definition 5.10),
7. Jitter constraints (Definition 5.2),

Definition 6.4 (Partition activation assignment problem)
Definition 6.5 (Partition Scheduling Problem) A schedule σR with resource assign-
ment function α is said to satisfy the partition scheduling problem if it satisfies all of the
following constraints

1. Compute time constraint (Definition 5.1),
2. Strictly sequential instance constraints (Definition 5.5),
3. Partial-order flow constraint (Definition 5.4),
4. Allowed Resources Constraints (Definition 5.19),
5. Connectivity Constraints (Definition 5.17),

c©2012-2013 Adventium Labs 24

SPICA

6. End-to-end latency constraints (Definition 5.10),
7. Jitter constraints (Definition 5.11),

Notice in particular that the difference between the task scheduling problem defined in 6.3
and the partition scheduling problem defined in 6.5 is the replacement of task jitter and
latency with partition jitter and latency.

7 Examples

In this section, we provide some additional examples of using the formal notation developed
in previous sections to define scheduling problems. In particular, we add both flows and
more complex systems.

Here is a simple example of a problem involving flows and end-to-end latency
Example 7.1

A =

{
C = (“processor”, 0, 0),

B = (“ethernet”, 0, 0)

}

T =

τ1 = (5, 2, 0, (“processor”, 1)),

τ2 = (5, 1, 0, (“processor”, 1)),

τc1 = (5, 1, 0, (“ethernet”, 1)),

τc2 = (5, 1, 0, (“ethernet”, 1)),

F =

{
F1 = ((τ1 → τc1 → τ2), 4, 5),

F2 = ((τ2 → τc2 → τ1), 4, 5)

}

Here is a slightly more complex example, involving sub-period latency constraints. A
typical RMA scheduler will not be able to schedule this.
Example 7.2

A =

{
C = (“processor”, 0, 0),

B = (“ethernet”, 0, 0)

}

T =

τ1 = (10, 2, 0, (“processor”, 1)),

τ2 = (10, 2, 0, (“processor”, 1)),

τ3 = (10, 1, 0, (“processor”, 1)),

τ4 = (10, 2, 0, (“processor”, 1)),

τ5 = (10, 1, 0, (“processor”, 1)),

τc1 = (10, 1, 0, (“ethernet”, 1)),

τc2 = (10, 1, 0, (“ethernet”, 1)),

τc3 = (5, 1, 0, (“ethernet”, 1))

F =

{
F1 = ((τ1 → τc1 → τ2 → τc2 → τ3), 8, 10),

F2 = ((τ4 → τc3 → τ5), 9, 10)

}

c©2012-2013 Adventium Labs 25

SPICA

Here is an example that includes latency and jitter, and a simple definition of a system.

Example 7.3

A =

{
C = (“processor”, 0, 0),

B = (“ethernet”, 0, 0)

}
S = {{C,B}}

T =

τ1 = (10, 1, 0, {“processor”}),
τ2 = (10, 2, 0, {“processor”}),
τ3 = (10, 1, 0, {“processor”}),
τ4 = (5, 1, 1, {“processor”}),
τ5 = (5, 1, 1, {“processor”}),
τ6 = (20, 1, 0, {“processor”}),
τc1 = (10, 1, 0, {“ethernet”}),
τc2 = (10, 1, 0, {“ethernet”}),
τc3 = (10, 1, 0, {“ethernet”})

F =

{
F1 = ((τ1 → τc1 → τ2 → τc2 → τ3), 9, 10),

F2 = ((τ4 → τc3 → τ5), 4, 5)

}

A sample solution for this problem instance is

σP = [6, 1, 4, 2, 2, 5, 3, 4,−,−, 5, 1, 4, 2, 2, 5, 3, 4,−, 5]

σB = [−,−, 1,−, 3, 2,−,−,−, 3,−,−, 1,−, 3, 2,−,−, 3,−]

Finally, here is a small example that captures the full complexity of the model, including
context switch time, preemption time, jitter requirements, end-to-end latency. In order to
schedule this, all resources must be used to near their full capacity.
Example 7.4

A =

C1 = (“processor”, 10, 5),

C2 = (“processor”, 10, 5),

M1 = (“memory”, 5, 5)

M2 = (“memory”, 5, 5)

M3 = (“memory”, 5, 5)

M4 = (“memory”, 5, 5)

B = (“ethernet”, 25, 25)

S = {{C1, B,M1,M2} {C2, B,M3,M4}}

c©2012-2013 Adventium Labs 26

SPICA

T =

τ1 = (1000, 100, 0, {“processor”, “memory”}),
τ2 = (1000, 200, 0, {“processor”, “memory”}),
τ3 = (1000, 100, 0, {“processor”, “memory”}),
τ4 = (500, 100, 100, {“processor”, “memory”}),
τ5 = (500, 100, 100, {“processor”, “memory”}),
τ6 = (2000, 100, 0, {“processor”, “memory”}),
τc1 = (1000, 100, 0, {“ethernet”}),
τc2 = (1000, 100, 0, {“ethernet”}),
τc3 = (1000, 100, 0, {“ethernet”}),
τ7 = (1000, 100, 0, {“processor”, “memory”}),
τ8 = (1000, 200, 0, {“processor”, “memory”}),
τ9 = (1000, 100, 0, {“processor”, “memory”}),
τ10 = (500, 100, 100, {“processor”, “memory”}),
τ11 = (500, 100, 100, {“processor”, “memory”}),
τ12 = (2000, 100, 0, {“processor”, “memory”}),
τc4 = (1000, 100, 0, {“ethernet”}),
τc5 = (1000, 100, 0, {“ethernet”}),
τc6 = (1000, 100, 0, {“ethernet”}),
τ12 = (2000, 100, 0, {“processor”, “memory”}),
τ13 = (2000, 100, 0, {“processor”, “memory”}),
τc7 = (2000, 100, 0, {“ethernet”}),
τc8 = (2000, 100, 0, {“ethernet”}),
τ14 = (2000, 100, 0, {“processor”, “memory”}),
τ15 = (2000, 100, 0, {“processor”, “memory”}),
τc9 = (2000, 100, 0, {“ethernet”}),
τc10 = (2000, 100, 0, {“ethernet”}),

F =

F1 = ((τ1 → τc1 → τ2 → τc2 → τ3), 900, 1000),

F2 = ((τ4 → τc3 → τ5), 400, 500)

F3 = ((τ7 → τc4 → τ8 → τc5 → τ9), 900, 1000),

F4 = ((τ10 → τc6 → τ11), 400, 500)

F5 = ((τ12 → τc7 → τ13), 400, 2000),

F6 = ((τ13 → τc8 → τ12), 400, 2000),

F7 = ((τ14 → τc9 → τ15), 400, 2000),

F8 = ((τ15 → τc10 → τ14), 400, 2000)

c©2012-2013 Adventium Labs 27

SPICA

8 Conclusion and Next Steps

Our Phase I project addressed the primary risks of the SPICA approach, including complexity-
driven scaling in domain-specific solver performance and the interaction between problem
requirements (e.g., separation constraints) and the allocation flexibility provided by a given
avionics architecture. In the Phase I effort we have generated a formal specification of the
complete set of constraints, sufficient to represent a wide range of different avionics archi-
tectures and problems. We have produced a large set of test problems for input to the
yices SMT solver, demonstrating the use of those constraints, along with output results
and performance data, as well as a tunable test problem generator, automatically generat-
ing problem instances in yices input format. Finally, we have also produced an exemplar
aircraft avionics architecture, rendered in both diagrams and AADL.

In Phase II, we will further extend the modeling capabilities of the SPICA system
and mature the existing TRL 3 prototype to TRL 5 by improving the system’s robustness,
integration, and scaling performance. We have also proposed an optional task, to integrate
SPICA with other AADL-based design and development tools by providing an interface
(i.e., a plugin) to the Open Source AADL Tool Environment (OSATE). This will make
SPICA available to the large and growing community using AADL as a modeling language
for system design, as well as provide two-way access between SPICA and a wide range of
open-source tools for analyzing systems specified in AADL.

Specific Phase II objectives for SPICA are divided between additional research issues to
address, and maturation of the existing prototype implementation. For research, our specific
goals include:
• Addressing some additional issues in modeling multi-core performance, specifically

including contention for on-board cache memory under different allocation schemes.
• Integration of multiple scheduling approaches in the same model, for example support-

ing the use of schedulability analysis during the scheduling process to drive allocation
decisions.
• Modeling other communication and resource allocation protocols, extending the currently-

defined set of constraints as required.
For maturation of the prototype, specific objectives include:
• Improving scaling performance as discussed above.
• Finalizing the translation from AADL to SMT input format.
• Implementing a broader set of avionics architectures in our AADL model database
• Providing an explanatory capability for unschedulable models, based on the sets of

constraints found to be inconsistent.

References

[1] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur.
Comput. 1, 1 (Jan. 2004), 11–33.

[2] Buttazzo, G. C. Hard real-time computing systems. Springer, 2005.

c©2012-2013 Adventium Labs 28

SPICA

[3] Carpenter, T., Driscoll, K., Hoyme, K., and Carciofini, J. Arinc 659
scheduling: Problem definition. RTSS 1994 (1994).

[4] Crawford, J. M., and Baker, A. B. Experimental results on the application of
satisfiability algorithms to scheduling problems. In Proceedings of the twelfth national
conference on Artificial intelligence (vol. 2) (Menlo Park, CA, USA, 1994), AAAI’94,
American Association for Artificial Intelligence, pp. 1092–1097.

[5] Feiler, P. H., Hansson, J., de Niz, D., and Wrage, L. System architecture vir-
tual integration: An industrial case study. Tech. Rep. CMU/SEI-2009-TR-017, Software
Engineering Institute, November 2008.

[6] ISO/IEC, JTC1/SC7, 42, W., and IEEE. Systems and software engineering Ar-
chitecture description. http://www.iso-architecture.org/42010/, 2010. [Online;
accessed 14-May-2013].

[7] Johnston, S., Edman, R., Mohammed, A., Carpenter, T., and Nelson, K.
MiCART Technology Demonstration Video, 2012. http://www.adventiumlabs.com/

video/micart.
[8] Liu, J. Real-Time Systems. Prentice Hall, 2000.
[9] Moura, L., and Bjørner, N. Satisfiability modulo theories: An appetizer. In

Formal Methods: Foundations and Applications, M. V. Oliveira and J. Woodcock, Eds.
Springer-Verlag, Berlin, Heidelberg, 2009, pp. 23–36.

[10] Steiner, W. An evaluation of smt-based schedule synthesis for time-triggered multi-
hop networks. In Real-Time Systems Symposium (RTSS), 2010 IEEE 31st (2010),
IEEE, pp. 375–384.

c©2012-2013 Adventium Labs 29

http://www.iso-architecture.org/42010/
http://www.adventiumlabs.com/video/micart
http://www.adventiumlabs.com/video/micart

	Introduction
	Innovation and Novelty
	National Aeronautics Impact

	Phase I Progress and Results
	Preliminaries
	Notation and Definitions
	Resources
	Systems
	Tasks
	Partitions
	Flows
	Schedules and Assignments

	Constraints
	Task Constraints
	Partition Constraints
	Resource Constraints
	System Constraints

	Defining the Scheduling Problem for SPICA
	Examples
	Conclusion and Next Steps

